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L iquid Crystals, 1998, Vol. 25, No. 3, 319 ± 327

A back¯ ow e� ect in smectic C liquid crystals

by GEORGE I. BLAKE² and FRANK M. LESLIE*

Department of Mathematics, University of Strathclyde, Livingstone Tower,
Richmond Street, Glasgow G1 1XH, UK

(Received 30 October 1997; accepted 29 November 1997 )

This paper discusses the in¯ uence upon a smectic C liquid crystal cell of back¯ ow induced
by the relaxation of alignment following the removal of a strong electric or magnetic ® eld.
Our study, based upon a recently proposed continuum theory, concentrates upon the
homeotropic con® guration in which the smectic layers are parallel to the boundary plates,
but some consideration is also given to the bookshelf geometry. Although the governing
equations prove to be rather complex, some progress is possible analytically by repeating an
approximation made in the corresponding problem for a nematic.

1. Introduction relaxation of alignment in smectic C liquid crystals when
a magnetic or electric ® eld is removed. Not surprisingly,A problem in nematic liquid crystals that gave rise to

a good deal of theoretical and experimental interest was our attention is mostly given to the somewhat simpler
homeotropic con® guration in which the layering isthat of òptical bounce’ in a twisted nematic cell, this

demonstrating the relevance of ¯ ow e� ects to display parallel to the plates. Although the continuum equations
for smectics are more complex than those for nematics,applications. Gerritsma et al. [1] observed that upon

the removal of a strong electric ® eld applied across a it does prove possible to reproduce to a large extent the
calculations of Clark and Leslie [5] for nematic liquidtwisted nematic cell, the optical transmission does not

decrease monotonically to zero as one might expect; crystals, the only signi® cant di� erence being the need to
include two velocity components rather than one.instead, following an initial decrease, it increases to a

value slightly less than the initial level before ® nally In summary, the following section of the paper gives
a brief account of the continuum theory of Leslie et al.decaying to zero. Van Doorn [2] explains this phenom-

enon as a consequence of ¯ ow induced close to the cell for smectic C liquid crystals. Thereafter we consider a
situation for a homeotropically aligned sample which iswalls, commonly called b̀ack¯ ow’, by the rapidly

relaxing alignment following the removal of the ® eld. analogous to the optical bounce problem in nematics,
discussing two approximate analytical solutions. The ® rstThis ¯ ow essentially creates a shear ¯ ow in the centre

of the cell which causes a temporary reversal of the approximates behaviour close to a boundary surface,
and largely motivates the second more practical solution.relaxation in that region, before the alignment ® nally

relaxes as one anticipates. His explanation is borne out The ® nal section brie¯ y discusses the e� ect of back¯ ow
in the bookshelf geometry.by subsequent theoretical studies [3± 5 ].

With the possibility of fast, bistable ferroelectric liquid
2. Continuum theorycrystal display devices as discussed by Clark and

The continuum theory of Leslie et al. [7] forLagerwall [6], attention has largely turned in the last
smectic C liquid crystals invokes a number of simplifyingdecade or so from nematic to smectic liquid crystals.
assumptions, which help to avoid undue mathematicalClearly it is reasonable to question whether similar ¯ ow
complexity, but of course limit its range of application.e� ects can also occur in this more complex type of liquid
In particular it assumes that the smectic layer spacingcrystal. Consequently this paper employs the continuum
remains constant (although the layers can deform) andtheory for smectics proposed recently by Leslie et al.
also that the tilt of alignment with respect to the layer[7] to investigate the possibility of back¯ ow in¯ uencing
normal remains ® xed. The former assumption certainly
appears reasonable in many situations, as does the

*Author for correspondence.
latter, although excluding pretransitional e� ects. Given² Present address: Department of Physics and Astronomy,
these constraints it is possible to describe smectic con-Schuster Laboratory, University of Manchester, Manchester

M13 9PL, UK. ® gurations using two orthonormal vectors, one the layer
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320 G. I. Blake and F. M. Leslie

unit normal a and the second a unit vector c giving the Ks constants. Following an argument proposed
originally by Ericksen [11] it follows thatthe direction of tilt with respect to the layer normal

(cf. de Gennes and Prost [8] ) so that
K2>0, K3>0, K4>0 (9 )

a ¯ a = c ¯c =1, a ¯c =0 (1 )
together with other inequalities not required in this paper.

and in the absence of defects in the layering one must The viscous stress tensor tÄ is the sum of a symmetric
add part

curl a =0 (2 ) ( tÄ ij) =m0 D ij+ m1ak Dkp apa ia j +m2 (D ikak a j+ D jkak a i )

+ m3 ck Dkpcpc icj +m4 (D ikck cj+ D jkckc i )as Oseen [9], and de Gennes and Prost [8] discuss.
Moreover the theory assumes isothermal conditions, and + m5 (a icj+ a jc i)ck Dkp ap + l1 (A ia j+ A ja i)
also not unreasonably incompressibility, with the result

+ l2 (C icj + C jc i) + l3 (a icj + aj c i)Ak ckthat the velocity vector v is subject to the constraint

+ k1 (D ikak cj + D jkakc i+ D ikck aj+ D jkcka i )div v =0 (3 )
+ k2[ (a icj + aj c i)ak Dkpap + 2akDkp cp a ia j]and the density r is constant.

The balance laws are those of classical continuum + k3[ (a icj + aj c i)ckDkp cp + 2ak Dkp cp c icj]
mechanics, namely balance of linear and angular

+ t1 (C iaj + C ja i) +t2 (A ic j+ A j c i)momentum except that the latter includes terms com-
monly omitted. In Cartesian tensor notation the former + 2t3 Ak ck a ia j+ 2t4Akckc icj (10)
takes the form

and a skew-symmetric part
rvÇ i=rF i+ t ij,j (4 )

[tÄ ij]=l1 (D jkak a i Õ D ikaka j ) +l2 (D jkckc i Õ D ikck cj )

F denoting body force per unit mass, t the stress tensor,
+ l3 (a icj Õ a jc i)ck Dkpap + l4 (A ja i Õ A ia j )and the superposed dot the material time derivative,

while the latter reduces to + l5 (C jc i Õ C icj ) + l6 (a icj Õ aj c i)Ak ck

+ t1 (D jkak c i Õ D ikak cj ) + t2 (D jkck a i Õ D ikck a j )0 =rK i+ e ijktkj+ l ij,j (5 )

+ t3 (a icj Õ aj c i)ak Dkpap +t4 (a icj Õ aj c i)ckDkp cpwith K denoting the external body moment per unit
mass and l the couple stress tensor. In the above a + t5 (A j c i Õ A icj + C ja i Õ C ia j ) (11)
repeated index is subject to the summation convention,

wherea comma preceding a su� x denotes a partial derivative
with respect to the corresponding spatial coordinate,
and e ijk is the alternator. 2D ij= v i,j + vj,i, 2W ij= v i,j Õ v j,i

A i=aÇ i Õ W ikak , C i= cÇ i Õ W ikck

(12)
The constitutive relations for stress and couple stress

are
and the coe� cients are constants.

The intrinsic viscous moment in equation (5) can be
t ij= Õ pd ij+ bpepjkak,i Õ

qW

qak,j
ak,i Õ

qW

qck,j
ck,i+ tÄ ij (6 ) expressed as

e ijk[tÄ kj]= e ijk(a jgÄ
a
k+ cj gÄ

c
k ) (13)

l ij=bpapd ij Õ b iaj + e ipq A ap
qW

qaq,j
+ cp

qW

qcq,jB (7 )
where

where the pressure p and the vector b arise on account gÄ
a
i = Õ 2 (l1 D ikak+ l3ak Dkp cp c i+l4 A i+l6 Ak ck c i

of the constraints (3) and (2), respectively. The energy
+ t2D ikck +t3ap Dpk akc i+ t4 cp Dpk ck c i+t5C i )W can be expressed in several equivalent forms [10]

and here we write (14)

2W =K1 (a i,i )
2+ (K2 Õ K4 ) (c i,i)

2+ (K3 Õ K4 )c i,p cp c i,q cq gÄ
c
i = Õ 2 (l2 D ikck +l5 C i+t1D ikak + t5A i) . (15)

+ K4 c i,j c i,j + (K5 Õ K3 ) (c ia i,jcj )
2

Likewise the external body moment arising from external
magnetic or electric ® elds can be written+ 2K6 a i,i (cja j,k ck ) Õ 2K7 c i,p cp c i,q aq

+ 2 (K8 Õ K7 )c i,i(cj aj,k ck ) + 2K9a i,icj,j (8 ) rK i= e ijk(a jG
a
k + cjG

c
k ) . (16)
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321Back¯ ow e� ect in SmC L C

As a consequence of equations (13) and (16) it is possible must also consider a velocity ® eld of the form
to rewrite the angular momentum (5) as

v = (u , v, 0 ) (23)

where u and v depend only upon z and t. Our choice ofA qW

qa i,jB ,j
Õ

qW

qa i
+ G

a
i + gÄ

a
i + ca i+ mc i+ e ijkbk,j=0

solution is entirely consistent with the constraints
(1)± (3 ), and not unreasonably the pressure p, the vector(17)
b and the Lagrange multipliers c, m and t are also
assumed to be functions of only z and t. With the formsA qW

qc i,jB ,j
Õ

qW

qc i
+ G

c
i + gÄ

c
i +tc i+ ma i=0 (18)

of solution (22) and (23), equations (17)± (19) yield

the scalars c, m and t being Lagrangian multipliers
r

qu

qt
=

q
qz C (g1 +g2 cos2

w)
qu

qz
+g2 sin w cos w

qv

qzarising from the constraints (1). Also the balance of
linear momentum can be written as

+ (t5 Õ t1 ) sin w
qw

qt D (24)rvÇ i=rF i Õ pÄ ,i+ gÄ
a
kak,i+ gÄ

c
k ck,i+ tÄ ij,j (19)

with
r

qv

qt
=

q
qz C g2 sin w cos w

qu

qz
+ (g1 + g2 sin2

w)
qv

qzpÄ =p + W Õ y (20)

y denoting the energy associated with the external
Õ (t5 Õ t1 ) cos w

qw

qt D (25)magnetic or electric ® eld. The forms for y , G
a and G

c

are not given since they are not required in what follows.
Finally the viscous dissipation inequality reduces to

K4
q2

w

qz
2 Õ 2l5

qw

qt
+ (t5 Õ t1 )A cos w

qv

qz
Õ sin w

qu

qz B =0
( tÄ ij) D ij Õ gÄ

a
i A i Õ gÄ

c
i C i > 0 (21)

(26)which is required to place restrictions upon viscous
coe� cients in our analysis. along with expressions for the pressure p, the vector b

and the multipliers c, m and t, which are not required.
3. Back¯ ow in the homeotropic geometry In equations (24) and (25) the viscosities g1 and g2 are

Consider a uniformly aligned smectic C liquid crystal given by
in the homeotropic geometry con® ned between two
parallel, ¯ at plates a distance 2d apart, so that the layers 2g1=m0 +m2 Õ 2l1 + l4

2g2=m4 +m5 + 2l2 Õ 2l3 + l5 + l6 .
(27)are everywhere parallel to the plates. With an appro-

priate choice of Cartesian axes, the layers and the
With appropriate choices for the velocity and directorplates lie in x ,y-planes and the alignment in x ,z-planes.
® elds, one can show using the inequality (21) thatAssuming strong anchoring at the plates, application of

a su� ciently strong magnetic ® eld in the direction of
g1>0, g1+ g2>0, l5>0. (28)

the y-axis leads to a distortion of the c-director, provided
By assuming strong anchoring of the alignment andthat the liquid crystal has a positive diamagnetic aniso-

no-slip of the velocity, the boundary and initial conditionstropy. Consequently, if the layers remain undistorted by
readthe application of such a ® eld, the directors a and c take

the forms
w (Ô d, t) =u (Ô d, t) = v (Ô d, t) =0, t > 0 (29)

a = ( 0, 0, 1 ), c = (cos w, sin w, 0 ) (22)
w(z, 0 ) =w0 (z) , u (z, 0 ) = v (z, 0 ) =0, Õ d < z<d

where w is the angle that c makes with the x-axis. If the (30)
distortion of c is uniform in the x and y directions, w is
solely a function of z and t. Below we examine the where w0 is a known even function of z, having taken

our origin of coordinates midway between the plates.relaxation of the alignment following the removal of
the magnetic ® eld. The system of equations (24)± (26) is rather com-

plicated and it appears that a numerical approach is theAn inspection of equations (17)± (19) suggests that
the problem is likely to be over-de® ned if one simply only option available. However, their form is similar to

the equations for the corresponding back¯ ow problemexamines solutions of the form (22), and indeed it is
necessary to introduce two components of velocity for in nematics [5], and by making certain approximations

Clark and Leslie were able to make some analyticalthe system to be well de® ned, instead of just one as in
the corresponding problem for nematics. Therefore one progress. By analogy we introduce similar simplifying
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322 G. I. Blake and F. M. Leslie

assumptions which allow us to continue without recourse so that this component of ¯ ow plays no role in the
initial relaxation.to numerical techniques.

The form of the coupled pair of partial di� erential
equations remaining in equations (32) plus the boundary3.1. T he half -space problem
and initial conditions (31), (33)± (35) suggest the use ofTo study the behaviour of the c-director and the
a similarity variable, and straightforward dimensionalinduced ¯ ow in the vicinity of a boundary, consider a
analysis leads one tohalf-space entirely ® lled with a uniformly aligned smectic

C liquid crystal with its layers parallel to the bounding
surface. As above, it is convenient to choose a Cartesian

w=F (f) , u = (k/t)
1/2

G (f)

f= z/2 (kt )
1/2

, k =K4 /2l5 .
(37)

coordinate system for which the c-director is initially
parallel to the x-axis and the x ,y-plane is coincident As a consequence the remaining equations (32) become
with the boundary, and again assume that there is strong

l5 (F ² + 2fF ¾ ) = (t5 Õ t1 )G ¾ (38)anchoring at the boundary. If a su� ciently strong
magnetic ® eld is applied parallel to the y-axis, that is in g1 G ² + g1e(fG ¾ + G ) + (t1 Õ t5 ) (fF ² + F ¾ ) =0 (39)
the plane of the layers but perpendicular to the initial

withalignment of the c-director, one expects c to become
everywhere approximately parallel to the direction of e=rK4 /g1l5 (40)
the applied ® eld, except in a narrow region close to the

and the prime denoting di� erentiation with respect to f.boundary. Therefore a reasonable approximation to the
Also the boundary and initial conditions reduce toinitial condition on the azimuthal angle w in this case is

F ( 0 ) =0, F (f) � p/2 as f � 2 (41)
w(z, 0 ) =p/2, z>0. (31)

G ( 0 ) =0, fG (f) � 0 as f � 2. (42)
Once c is fully re-orientated, the ® eld is removed.

The parameter e is positive on account of the inequalitiesTo simplify the governing equations (24)± (26) it seems
(9) and (28).reasonable to assume that during the ® rst stages of

Equation (39) readily integrates to yieldre-orientation good approximations to solutions are given
by replacing the variable coe� cients by their values g1G ¾ + g1efG = (t5 Õ t1 )fF ¾ (43)
initially. In this event, replacing w in these coe� cients

the constant of integration being zero on account ofby the value p/2 one obtains
conditions at large f. This integral allows one to eliminate
F from equation (38) to obtain an equation for G which
is readily solved by the change of independent variable
from f to f

2. Having found G , F follows quickly from
equation (43). In this way one readily obtains

r
qu

qt
=g1

q2
u

qz
2 + (t5 Õ t1 )

q2
w

qzqt

r
qv

qt
= (g1 + g2 )

q2
v

qz
2

2l5
qw

qt
=K4

q2
w

qz
2 Õ (t5 Õ t1 )

qu

qz
.

(32)

F (f) =
p

2D C ( 2n1 Õ e) erf (n
1/2
1 f)

Õ A n1

n2B
1/2

( 2n2 Õ e) erf (n
1/2
2 f)D

G (f) =
(t1 Õ t5 ) (pn1 )

1/2

g1D
[exp (Õ n1f

2
) Õ exp (Õ n2f

2
) ]

As well as strong anchoring we assume no-slip at the
boundary, and thus our boundary conditions are

w( 0, t ) =0, u ( 0, t) = v ( 0, t) =0, t > 0. (33)

Also, it seems reasonable to assume that the induced
(44)¯ ow decays with distance from the wall, and therefore

we add where

u (z, t) � 0, v (z, t) � 0 as z � 2 (34)

as well as the initial conditions

u (z, 0 ) =0, v (z, 0 ) =0, z >0. (35)

D = ( 2n1 Õ e) Õ ( 2n2 Õ e) A n1

n2B
1/2

erf (x ) =
2

p
1/2 P

x

0
exp (Õ s

2
) ds

4n1=2m +e + [ ( 2m + e)
2 Õ 8e]1/2

4n2=2m +e Õ [ ( 2m + e)
2 Õ 8e]1/2

.

(45)
Immediately the second of equations (32) subject to the
above conditions on the component v yields

v (z, t) =0, z, t >0 (36)
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323Back¯ ow e� ect in SmC L C

The parameter m is given by

m =1 Õ
(t5 Õ t1 )

2

2g1l5
(46)

and can be shown to be positive using the inequality (21).
Since the viscous coe� cients of a smectic C liquid

crystal are invariably much larger than the elastic
constants, one has

m &e (47)

and n1 and n2 are clearly positive. To the ® rst order in e

they are given by
Figure 2. Plot of the velocity, u, at various distances from

the boundary.n1=m, n2=e/2m (48)

and therefore the expressions (44) simplify considerably
to give

simply a typical nematic value. The graph for w yields
no surprises in that the angle relaxes straightforwardly
to zero after an initial delay dependent upon distancew .

p

2
erf[ ( m)

1/2
f]

u .
(t1 Õ t5 )

2g1 A pk

mt B
1/2

[exp (Õ mf
2
) Õ exp (Õ ef

2
/2m) ]

from the wall, the further from the boundary the longer
is the time for c to return to its position before the ® eld
was applied. However, the graph for the ¯ ow component
against time is more interesting. It illustrates that soon

(49)
after the ® eld is removed the induced ¯ ow is quite large

which are more useful in practice at distances of one or two microns from the boundary.
The plots for the angle w and the ¯ ow component u Since most cells used in the laboratory or devices have

against time at ® xed distances from the wall are shown gap widths of the order of microns, this ¯ ow is obviously
in ® gures 1 and 2. The values taken for the various signi® cant. Further, since t5 Õ t1 is expected to be
material parameters are positive in most smectic C materials [13], the latter of

equations (49) implies that the induced ¯ ow is in the
direction of the positive x-axis. Following the arguments

t5 Õ t1=2´4 Kg m Õ
1 s Õ

1
, g1=1´9 Kg m Õ

1 s Õ
1

l5=3´0 Kg m Õ
1 s Õ

1, K4=10 Õ
11 N

r=1 Kg m Õ
3

of Gerritsma et al. [1], and Clark and Leslie [5] the
above analysis implies that kickback is rather likely in
a homeotropically aligned smectic C material. These

(50) conclusions therefore motivate a more realistic analysis
of this problem.

all in SI units. The values for the viscosities are those
obtained by Leslie and Gill [12] from earlier light-

3.2. T he cell problem
scattering data, while that for the elastic constant is

The main obstacle towards solving analytically the
system of equations (24)± (26) subject to the conditions
(29) and (30) is the fact that most of the coe� cients
depend upon the angle w making the system non-linear.
Some progress with this di� cult problem is possible by
following the approach by Clark and Leslie [5] and
setting these coe� cients equal to constants. In this event
the equations become

r
qu

qt
=m

q2
u

qz
2 + p

q2
v

qz
2 + a

q2
w

qzqt

r
qv

qt
=p

q2
u

qz
2 + n

q2
v

qz
2 + b

q2
w

qzqt

2l5
qw

qt
=K4

q2
w

qz
2 Õ a

qu

qz
Õ b

qv

qz H (51)

Figure 1. Plot of the relaxation of w at various distances from
the boundary.
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324 G. I. Blake and F. M. Leslie

where and following a di� erentiation with respect to f, the
remaining equation reduces to

a = (t5 Õ t1 ) sin wÃ , b = (t1 Õ t5 ) coswÃ

m =g1 + g2 cos2
wÃ , n =g1 + g2 sin2

wÃ

p =g2 sin wÃ cos wÃ

(52)
q3

w

qf
3 =m

q2
w

qfqt
, m=1 Õ

(t5 Õ t1 )
2

2g1l5
(58)

the coe� cient m exactly as above taking a value between
zero and unity.the circum¯ ex denoting the fact that the value of w is

Upon applying the relevant boundary conditions (56),® xed. These equations are subject to the boundary and
one ® nds by separation of variables that an appropriateinitial conditions (29) and (30).
solution of equation (58) isIntroducing new non-dimensional variables

w=A (cos qf Õ cos q ) exp (Õ q
2
t/m) (59)

f=
z

d
, t=

kt

d
2 , uÄ =

du

k
, vÄ =

dv

k
, k =

K4

2l5 A and q being constants to be determined. It then
follows from equations (57) and the boundary conditions(53)
(56) that

the equations (51) become

uÄ =
A (c Õ ad)

( 1 Õ ab)m
q (sin qf Õ f sin q ) exp (Õ q

2
t/m)

vÄ =
A (d Õ bc)

( 1 Õ ab)m
q (sin qf Õ f sin q ) exp (Õ q

2
t/m)

(60)e
quÄ

qt
=

q2
uÄ

qf
2 + a

q2
vÄ

qf
2 + c

q2
w

qfqt

e
qvÄ

qt
=

q2
vÄ

qf
2 + b

q2
uÄ

qf
2 + d

q2
w

qfqt

qw

qt
=

q2
w

qf
2 Õ v

quÄ

qf
Õ k

qvÄ

qf H (54)
and for a non-trivial solution the last of equations (54)
requires that

( 1 Õ m) tan q =q. (61)

where Since this equation has in® nitely many solutions for q,
it follows by superposition that

e=
rk

m
, a =

p

m
, b=

p

n
, c=

a

m

d=
b

n
, v =

a

2l5
, k=

b

2l5
.

(55) w= �
2

n=1
An (cos qnf Õ cos qn ) exp (Õ q

2
n t/m)

uÄ =
(c Õ ad)

(1 Õ ab )m
�
2

n=1
Anqn (sin qnf Õ f sin qn ) exp (Õ q

2
n t/m)

vÄ =
(d Õ bc)

( 1 Õ ab )m
�
2

n=1
An qn (sin qnf Õ f sin qn ) exp (Õ q

2
n t/m) HAlso the boundary and initial conditions now take the

form

w (Ô 1, t) =uÄ (Ô 1, t) = vÄ (Ô 1, t) =0, t>0

w (f, 0 ) =w0 (f) , uÄ (f, 0 ) = vÄ (f, 0 ) =0, Õ 1<f<1.
(62)

where the qn are positive roots of the equation (61). The(56)
initial condition (56) on w implies that

As remarked above, the coe� cient e is very small
�
2

n=1
An (cos qnf Õ cos qn ) =w0 (f) , Õ 1 <f<1compared with unity, and therefore we neglect the

associated inertial terms in the ® rst two of equations (54),
(63)with the implication that the initial conditions on

the ¯ ow can no longer be satis® ed. However, as a
from which, noting that the functions cos qnf Õ cos qnconsequence the ® rst two of equations (54) yield
and cos qnf are reciprocal functions with respect to
integration from Õ 1 to 1, one obtains the coe� cients
An in the form( 1 Õ ab )

q2
uÄ

qf
2 = (ad Õ c)

q2
w

qfqt

( 1 Õ ab )
q2

vÄ

qf
2 = ( bc Õ d)

q2
w

qfqt

(57)

An=
2qn

(qn Õ sin qn cos qn ) P
1

0
w0 (f) cos qnf df. (64)
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325Back¯ ow e� ect in SmC L C

Further, following the removal of a very strong ® eld, it
is reasonable to select

w0 (f) =
p

2
, Õ 1 <f<1 (65)

and in this case

An=p cos qn /(sin2
qn Õ m) (66)

which are more readily calculated.
Figures 3± 5 provide plots for w, uÄ and vÄ against

reduced time t at various distances from the cell wall.
These illustrate behaviour following the removal of a Figure 5. Plot of the non-dimensional ized y-component of

velocity, vÄ , at various points in the cell.very strong ® eld, and therefore employ the approximate
formulae (66). The curves were calculated using two
thousand terms in the series solutions. The ® rst 20 roots
of equation (61) were found using the Rule of False

increase shortly after the removal of the ® eld beforePosition, but thereafter the remainder were approxi-
mated by (2n Õ 1)p/2. In our calculations the viscosity decaying to zero, the e� ect most marked in the centre
functions a, b, c and d were updated at each step, the of the cell. Since our analysis neglects the ¯ uid inertia,
angle wÃ being replaced by a more appropriate choice. the initial values for the induced ¯ ow are non-zero in
The values chosen for the material parameters are our both ® gures 4 and 5.
earlier choice (50), with the value for g2 taken to be
Õ 0 2́ in SI units [12]. Figure 3 shows that w does indeed

4. Back¯ ow in the bookshelf geometry

In this section we consider brie¯ y similar back¯ ow
e� ects in a smectic C liquid crystal when the layers are
everywhere perpendicular to the two parallel bounding
plates. With a choice of coordinate axes such that the
x ,y-planes are parallel to the plates, we assume that
initially the anisotropic axis lies in the x ,y-plane and
the c-director lies parallel to the y-axis. Provided that
the surface anchoring of the alignment is strong and the
liquid crystal has a positive diamagnetic anisotropy,
application of a strong magnetic ® eld perpendicular to
the plates leads to a distortion of the uniform c-director
pro® le. As above, our intention is to examine behaviour
following the removal of the ® eld by seeking solutionsFigure 3. Plot of the relaxation of w at various points in
of equations (17)± (19) of the formthe cell.

a = (1, 0, 0 ), c = (0, cos w, sin w) , v = (u , v, 0 )

(67)

where w, u and v are functions solely of z and t.
The equations for angular momentum reduce to

K2C cos w
q2

w

qz
2 Õ A qw

qz B
2

sin wD cos w

+ K3C sin w
q2

w

qz
2 + A qw

qz B
2

cos wD sin w Õ 2l5
qw

qt

Figure 4. Plot of the non-dimensional ized x-component of Õ (t1 + t5 )
qu

qz
cos w Õ (l5 + l2 cos 2w)

qv

qz
=0 (68)

velocity, uÄ , at various points in the cell.
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326 G. I. Blake and F. M. Leslie

while the equations for linear momentum yield and

w(z, 0 ) =
p

2
, u (z, 0 ) = v (z, 0 ) =0, z >0. (76)

Here one quickly concludes that the component u is
identically zero, and by comparison with the results of
§ 3.1 that

r
qu

qt
=

q
qz C j1 (w)

qu

qz
+ j2 (w)

qv

qz
cos w

+ (t1+ t5 ) cos w
qw

qt D
r

qv

qt
=

q
qz C j2 (w)

qu

qz
cos w +j3 (w)

qv

qz

+ (l5+ l2 cos 2w)
qw

qt D
(69)

w .
p

2
erf (k

1/2
f)

v .
(l2 Õ l5 )

j3 A pk

2kt B
1/2C exp (Õ kf

2
) Õ exp A Õ

ef
2

k B D
(77)

2j1 (w) =m0+ m2 + 2l1+ l4

+ ( m4+ m5 Õ 2l2 + 2l3 +l5 + l6 ) sin2
w

2j2 (w) =k1 + t1 + t2+ t5 + 2 (k3 + t4 ) sin2
w

2j3 (w) =m0+ m4 +l5 + 2m3 sin2
w cos2

w + 2l2 cos 2w.

where

f=
z

2 (kt )
1/2 , k =

K3

2l5
, e=

rK3

j3l5

k =1 Õ
(l5 Õ l2 )

2

2l5j3
, 2j3=m0+ m4 Õ 2l2 + l5 .

(70)

At the plates one has

w(Ô d, t) =u (Ô d, t ) = v(Ô d, t) =0, t > 0 (71) (78)

while the initial conditions are From the inequality (21) one readily concludes that k

and j3 are positive, and therefore e is also positive.w(z, 0 ) =w0 (z) , u (z, 0 ) = v (z, 0 ) =0, Õ d< z <d
Again it is the solution for the ¯ ow component which is

(72) of interest. The solution takes the same form as in
equations (49), but here it is not possible to say withw0 (z) is again a known even function of z. This system
any degree of certainty whether the combination l2 Õ l5of equations is almost identical to the system obtained
is positive or negative. If the latter holds true, onein the previous section, di� ering only in the nature of the
obtains a similar graph for v to that depicted in ® gure 2elastic terms in angular momentum and the particular
for u, and in this case one anticipates that the kickbackforms of the coe� cients. Clearly they invite similar
e� ect is likely. However, if l2 Õ l5 is positive, the inducedapproximate analyses as employed above.
back¯ ow may simply hasten the relaxation process, withTurning ® rst to the half-space problem we again
the c-director returning directly and more rapidly to theconsider the application of a very strong ® eld and
uniform con® guration.therefore assume that

Finally we note that if the elastic constants K2 and
K3 are equal one can set the value of w in the coe� cients

w0 (z) .
p

2
. (73)

of equations (68) and (69) equal to some ® xed value to
obtain

Substitution of this value into the coe� cients in
equations (68) and (69) quickly yields

2l5
qw

qt
=K3

q2
w

qz
2 Õ a

qu

qz
Õ b

qv

qz

r
qu

qt
=m

q2
u

qz
2 + p

q2
v

qz
2 + a

q2
w

qzqt

r
qv

qt
=n

q2
v

qz
2 + p

q2
u

qz
2 + b

q2
w

qzqt H (79)

K3
q2

w

qz
2 Õ 2l5

qw

qt
Õ (l5 Õ l2 )

qv

qz
=0

r
qu

qt
=j1 A p

2 B q2
u

qz
2

r
qv

qt
=j3 A p

2 B q2
v

qz
2 + (l5 Õ l2 )

q2
w

qzqt

(74)

where for the present problem

and selecting the origin at the plate these are subject to a = (t1 + t5 ) cos wÃ , b =l5 + l2 cos 2wÃ

m =j1 (wÃ ) , p =j2 (wÃ ) cos wÃ , n =j3 (wÃ )
(80)

w( 0, t) =0, u ( 0, t) = v ( 0, t ) =0, t > 0 (75)
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327Back¯ ow e� ect in SmC L C

wÃ is the constant value assigned to w in the coeffi- assumption. With weak anchoring one would still expect
back¯ ow to have some in¯ uence, but perhaps not socients. Clearly the above system is identical to the

equations (51) allowing a repetition of the analysis of pronounced. In the bookshelf geometry this aspect does
not cause the same concern as it is more reasonable to§ 3.2. However, we do not pursue this here, essentially

because of lack of information about the various viscous assume strong anchoring. However, for this geometry
the problem is more complex, not because of thecoe� cients that appear in the coe� cients listed in

equations (80). governing equations, which are intrinsically the same
as those for homeotropic alignment, but because of
the number of material parameters involved, for which5. Conclusions
we have at present no values available. However,The above solutions illustrate that the relaxation
our preliminary analysis does indicate that back¯ owprocess of the c-director of a smectic C liquid crystal on
may in¯ uence the relaxation of the c-director in athe removal of an applied ® eld is not entirely straight-
non-monotonic manner.forward, it being necessary to take back¯ ow into

account. The analysis presented shows that in the case
The work reported in this paper was supported by theof homeotropic alignment, choosing reasonable values

SERC and DRA Malvern through a CASE studentshipfor the various material parameters, c initially moves in
for G.I.B.a direction contrary to that which one would expect.
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